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In deriving the unit volume strength of brittle materials from beam bend test data, the 
shear and compressive stresses in the beam specimens are usually ignored. Depending on 
the span-to-depth ratio of the beam, these omissions may give rise to significant errors in 
the unit volume strength value, and in component failure probabilities derived from this 
strength value. In this paper, the effects of these systematic errors are considered for the 
3-point beam as a function of span-to-depth ratio and for different values of the Weibull 
modulus. The relative errors are found to be small and conservative provided a 
sufficiently large span-to-depth ratio is used and the compressive/tensile strength ratio of 
the material is relatively high. 

1. Introduction 
The following expression, based on the Weibull 
probability distribution function [1], has been 
developed [2] for the prediction of the failure 
probability of  a brittle component  or specimen 
subjected to mechanical or thermal loads: 

P~ = 1 - e x p  - ! - 2 ( V )  (1) 
/ \ O~v / v 

where Pf is the failure probability; m is the Weibull 
modulus; (1/m !) is the gamma function of  (1/m + 

1); Onom is a convenient nominal stress propor- 
tional to the load; 0fv is the mean tensile fracture 
stress of  unit volume of the material, i.e. the unit 
volume strength; V is the volume of  the compo- 
nent (subscript c) or specimen (subscript s); and 
v is unit volume. 

The quantity Z ( V )  is the "s t ress-volume 
integral" defined by the expression 

Z ( V )  

( mf] + H (  Ono V- (2) 

in which al, o2 and 03 are the three principal 
stresses acting on the volume element dV, and 
H(a )  is a step function such that 

when a~>0 H(a )  = 1 

when a < 0 H(o)  = -- 

where ~ is the numerical ratio of the compressive 
to the tensile strength of the material. 

The detailed development of  Equation 1 is 
critically discussed in [2, 3], and [4] deals in detail 
with the unit volume strength concept. A typical 
application of the equation in a major design 
study is described in [5]. 

The material characteristics in Equation 1 are 
the quantities m, which is an inverse measure of 
the strength variability of  a batch of nominally 
identical specimens, and 6~v, a strength parameter. 
Clearly these quantities must be determined before 
quantitative Pf calculations can be made in a 
particular case. (An alternative formulation of 
Equation 1 is avilable [2] in which the material 
strength is defined in terms of 0~a, the mean ten- 
sile fracture stress of  unit surface area of  the 
material, and the stress integral is taken over the 
surface area of  the body instead o f  over the 
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volume as in Equation 2. In the work presented 
in this paper the unit volume strength 3~v is used 
as the strength term throughout. The relative 
merits of 0fv and O~a are discussed in [4].) 

The Weibull modulus and unit  volume strength 
are readily obtained from fracture test data for a 
large batch of nominally identical specimens, 
loaded in such a way as to give a known stress dis- 
tribution. The simple uniaxial tensile test speci- 
men is not satisfactory for this purpose, and wide 
use is made of the simply supported beam speci- 
men subjected to 3-point or 4-point bending [6]. 
The Weibull modulus m is usually derived graphic- 
ally or by curve-fitting from the ranked fracture 
loads (or nominal stresses) and is not subjected to 
the errors discussed below. In deriving the unit 
volume strength, 6fv, the stress distribution in the 
beam specimen is required for calculation of 
N(Vs) , and it is customary [4, 7] to ignore the 
shear stresses and compressive stresses which occur 
in the specimens (r/ the compressive/tensile 
strength ratio is usually considerably greater than 
unity, typically 8 to 10). Systematic errors occur 
therefore in the calculated unit volume strength 
and in any failure probability values derived from 
it. An assessment of these errors is given in the 
present paper. 

2. Derivation of unit volume strength 
The unit volume strength is related to the mean 
value, O-horn, of the nominal fracture stress of a 
large batch of nominally identical specimens of the 
material and the stress-volume integral of the 
specimen by the expression [4] 

r ql/rn 

The derivation of Equation 3 from Equation 1 
is detailed in [4]; it is convenient to use Equation 
3 for the determination of 6fv from the test 
results. 

Since the errors to be considered are greatest in 
the case of the 3-point beam (see Fig. 1), this 
specimen is treated in detail. The nominal stress in 
beam work is invariably chosen as the maximum 
tensile stress due to bending, i.e. 3 W l / 2 b d  a for the 
3-point beam (see Fig. la for symbols and Fig. lc 
for the bending moment distribution). The mean 
nominal stress at fracture follows therefore 
directly from the mean fracture load. In obtaining 
the specimen volume (V s = b x d x l), the portions 
of the specimen outside the supports (i.e. the 
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Figure 1 The 3-point bend specimen (a) notation, (b) 
shear force distribution, (c) bending moment distribution. 

"overhangs") are ignored. Expressions for the 
stress-volume integral are derived below firstly, 
as is usual, with shear stresses and compressive 
stresses ignored and then with due allowance for 
these stresses. 

2.1. A p p r o x i m a t e  s t r e s s - v o l u m e  integral 
The direct stresses due to bending at a general 
point in the beam are 

x < I/2, c~ x = 6 W x y / b d  3 

x > l / 2 ,  as = 6 W ( l - x ) y / b d  3 (4) 

(The stresses in the y-direction and those normal 
to the plane of Fig. la are assumed zero through- 
out.) If  shear stresses are neglected, then the above 
become the principal stresses and can be substi- 
tuted directly into Equation 2. If, further, the 
compressive stresses are ignored (i.e. the integra- 
tion is limited to 0 <~y <~d/2) then, using the 
above nominal stress, the stress-volume integral 
(Equation 2) is obtained by simple integration as 

2~,(Vs)  = 1 
2(m + 1) 2 (5) 

(The asterisk is used to indicate that this is an 
approximate form for the integral.) 

2.2. Exact stress--volume integral 
The 3-point beam experiences the transverse shear 
force system depicted in Fig. lb. The correspond- 
ing shear stress at a general point is given by [8] 
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x <l /2 ,  rxy = bd 3 

x >l /2 ,  rxy - bd 3 

In the combined system of direct stresses 
(Equation 4) and shear stresses (Equation 6), the 
principal stresses o~ and o2 become 

�9 1/2 

Ol, 2 : ~ - •  + Txy 

Substituting for o x and rxy from Equations 4 and 
6 respectively, these principal stresses and the pre- 
vious nominal stress may be used in Equation 2 
to give an "exact" expression for the stress- 
volume integral of the form 

2 .l/2~ +d/2 [ 

+ dy dx (8) 

(The integrand in Equation 8 consists of two terms 
which are identical except that one contains the 
H(ol)  term and the plus sign of the + alternative, 
the other contains the H(c~2) term and the minus 
sign of the + alternative.) 

It will be noted that the integration limits for 
y (+d/2 to  -all2) are such that compressive 
stresses as well as shear stresses are taken into 
account and the limits for x (0 to l/2) exploit the 
symmetry of the stress distributions about the 
mid-span of the beam (Figs. 1 b and c). 

Using Equation 3, the effects of using the 
approximate (Equation 5) instead of the exact 
form of the stress-volume integral (Equation 8) 
on the derived unit volume strength value and sub- 
sequent failure probability values have been assessed 
for different values of span-to-depth ratio, I/d, and 
Weibull modulus, m. The value of rt, the compress- 
ive/tensile strength ratio, is important; a value of 8 
(as used in previous work [9] ) was taken initially. 

3. Calculation procedure 
Equation 8 cannot be integrated analytically and a 
numerical evaluation using the Gaussian integration 
procedure [10] was used. The number of Gauss 
points was increased until the difference between 
successive values of 2;(V~) in an interactive process 
was less than 0.2%; an end-total of 15 x 15 Gauss 
points was used. As a check on accuracy, the same 
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calculation was performed for a 3-point beam with 
lid of 10 and m of 20, neglecting shear and com- 
pressive stresses; the value of E* (Vs) obtained was 
within 0.1% of the value calculated from Equation 5. 

4. Results 
4.1. Error in stress-volume integral 
The relative difference (i�9149 AE(Vs)/2;(Vs)where 
&E(Vs) = 2;*(V~)-- 2;(Vs) ) between the approxi- 
mate stress-volume integral 2;*(Vs) (Equation 5) 
and the numerically evaluated value 2;(V~) 
(Equation 8), is shown in Fig. 2a as a function of 
lid ratio for m-values of 5, 10, 15 and 20. The 
relative error in the stress-volume integral caused 
by neglecting shear and compressive stresses in a 
3-point beam specimen is always negative (i.e. E* 
(Vs) is less than E(V~)) and decreases (numerically) 
with m. It is seen that for m = 5 and a length-to- 
depth ratio greater than 3.25 the error will be less 
than 5%. For lid ratios greater than 8 the error is 
less than 1% for all m-values studied (Fig. 2a). 

4.2. Error in unit volume strength 
The resultant error in the unit volume strength 
ofv can be calculated from the errors in E (Vs) 
obtained above. 

Using the normal error analysis techniques 
[11], and ignoring errors in the other parameters, 
the relative error in ~fv is obtained from Equation 
3 as 

A 6 f v _  1 [ AE (Vs)] 
(9) 

where the prefix A denotes the absolute error in a 
quantity. (A6fv/6~v) is plotted against lid in 
Fig. 2b for the four m-values. Again, the error is 
always negative and values of the unit volume 
strength derived from the approximate stress- 
volume integral are therefore conservative. 

The error decreases with increasing m and is 
generally small; for example, beams with lid ratios 
greater than 3.5 give a relative error in 6fv of less 
than 1% for the range of m considered. 

4.3�9 Error in component failure 
probability 

Values of component failure probability calculated 
from Equation 1 using erroneous values of unit 
volume strength will be systematically in error. 
These errors can be estimated from an error ana- 
lysis based on Equation 1. 
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Figure 2 Nomograph for determining Adfv/dfv and APf/Pf for 3-point beam specimens of different lid ratios and 
m = 5, 10, 15 and 20 (~ = 8). 

4.3. I. For small failure probabilities 
Equation 1 may be rewritten as 

In (1 - -Pf )  = E (10) 

where E is used to denote the quantity 

For values of  component failure probability less 
than about 10 -a, it is satisfactory to write as 
an approximation, Pf -~ - In (1 --Pf)  or, from 
Equation 1 O, 

Pf ~ - - E  (11) 

(The error in this approximation for a Pf value 
of  10 -2 is 5 x 10 -s ,  i.e. about 0.5%.) For such 
cases, ignoring errors in quantities other than 
~fv, it follows that the relative error in the prob- 
ability of  failure is given by 

Pf E \ Ofv / 

The quantity (AE/E) is plotted in Fig. 2c as a 
function of  (AOfv/Ofv) for m-values o f  5, 10, 

15 and 20. For component failure probabil!ties 
less than 10 -2 the abscissa in Fig. 2c can be taken 
as APf/Pf and the plot provides an acceptable 
approximation for the relative error. It is to be 
noted that for these small failure probabilities 
the relative error is independent of  the actual 
value of  failure probability and is generally posi- 
tive. 

4.3.2. For any failure probabifity 
Where the failure probability exceeds l0  -2 the 
approximation represented in Equations 11 and 
12 may be unacceptable. In such cases Equation 1 
must be treated without simplification, giving 

AP e =  - - A E e x p E  

AE 
= - -  E exp E 

E 
AE 

= -- (1 - -Pf )  ln (1 - -Pf )  E 

from which it follows that 

(13) 
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Ap~" (1 - -P f )  In (1 - - P f )  AE 

Pf P~ E 

AE 
= f (PO (14) 

E 

It can be seen that, in general, the relative error in 
component  failure probability depends on the 
value of the failure probability itself, The quantity 
(Ap~/pf) is plotted in Fig. 2d against (AE/E) for 
several values of  failure probability. It is to be noted 
that as the value of  Pf tends to zero, (Apf/pf) 
tends towards the relative error for small failure 
probabilities (i.e. the limiting value of the function 
f (Pf)  in Equation 14 is 1). 

Figs. 2a to d are presented in the form of  a 
nomograph from which the relative error in unit 
volume strength for any given span-to-depth ratio 
of  the test beam specimens, and the corresponding 
relative error in component  failure probability, can 
be obtained. In the combined figure, an example 
i~ given in which results using test beams with an 
lift ratio of  4 and an m-value of 5, are seen to give 
a relative error o f  0.6% in 6fv and 3% in P~ for a 
component  which has a probability of  failure of 
0.01 or less. 

5. Effect of compressive-to-tensile 
strength ratio 

The above analysis was repeated for values of  ~7, 
the ratio of  the compressive-to-tensile strength, of  
4, 2 and 1 in turn. The relative error in 8fv, as a 
result of  neglecting shear and compressive stresses 
in the test specimens, and the corresponding rela- 
tive error in the predicted failure probability of  a 
component ,  were found to be small in all cases, 
except for ~7 = 1. (This extreme case represents a 
material which has the same strength in com- 
pression as in tension and is included for com- 
parison purposes.) 

For the specific 3-point beam example cited 
above (i.e. lid = 4, m = 5), relative errors in unit 
volume strength and component failure probability 
(for P~ 10 -2 ) are given in Table I for the four values 
ofrL 

T A B'L E I Relative errors in 6fv and Pf for different 
values of r~ (lid = 4, m = 5 , Pf  <~ 10 -2) 

AOfV (%) AP__.A~ (%) 
5fv PI 

8 -- 0.61 3.0 
4 -- 0.63 3.1 
2 -- 1.20 6.0 
1 -- 10.31 51.5 
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6. Conclusions 
The effects of  neglecting shear and compressive 
stresses in 3-point beam specimens used in brittle 
materials testing on the calculated unit volume 
strength are small for materials with a compressive 
to-tensile strength ratio significantly greater than 
unity, and are always conservative. 

The magnitude of the error depends on the 
length-to-depth ratio of  the beam specimens and 
the Weibull modulus of  the materials. In the 3- 
point bend test a minimum length-to-depth ratio 
of  4 will ensure that the error will not exceed 1% 
for the range of Weibull modulus values normally 
encountered. 

The resulting effects on the predicted probability 
of  fail~re of  components made from the material 
are also 'small, in general, and conservative. The 
relative error varies with the failure probability 
when this exceeds a value of c. 10 -2 . 
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